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Abstract �C31, �BT1, R4, and TG1 are temperate bac-
teriophages with broad host speciWcity for species of the
genus Streptomyces. They form lysogens by integrating
site-speciWcally into diverse attB sites located within indi-
vidual structural genes that map to the conserved core
region of streptomycete linear chromosomes. The target
genes containing the �C31, �BT1, R4, and TG1 attB sites
encode a pirin-like protein, an integral membrane protein,
an acyl-CoA synthetase, and an aminotransferase, respec-
tively. These genes are highly conserved within the genus
Streptomyces, and somewhat conserved within other acti-
nomycetes. In each case, integration is mediated by a large
serine recombinase that catalyzes unidirectional recombi-
nation between the bacteriophage attP and chromosomal
attB sites. The unidirectional nature of the integration
mechanism has been exploited in genetic engineering to
produce stable recombinants of streptomycetes, other acti-
nomycetes, eucaryotes, and archaea. The �C31 attachment/
integration (Att/Int) system has been the most widely used,
and it has been coupled with the �BT1 Att/Int system to

facilitate combinatorial biosynthesis of novel lipopeptide
antibiotics in Streptomyces fradiae.

Keywords Actinomycete · Genetic engineering · �BT1 · 
�C31 · Phage R4 · Phage TG1 · Site-speciWc integration · 
Streptomyces

Introduction

Streptomyces species are best known for their propensity to
produce secondary metabolites for use as antibiotics, antitu-
mor agents, immunomodulators, anthelmintic agents, and
insect control agents. More recently they have become an
important source of genetic tools applicable to a variety of
biological systems. This stems from fundamental work on
actinomycete bacteriophages (actinophages), particularly
on �C31, a temperate phage for Streptomyces species.
Among the temperate actinophages, there are two distinct
mechanisms for integration: the coliphage �-like tyrosine
recombinases that integrate into tRNA genes [1, 28, 99];
and the serine recombinases (used by �C31 and others dis-
cussed here) that integrate into diverse, unrelated structural
genes. �C31 was Wrst developed as a means to insert
cloned DNA into streptomycete genomes, but the unique
nature of the Att/Int system rendered it desirable for univer-
sal use in diverse cellular systems, including eukaryotes
and archaea. The universal utility derives from the unidirec-
tionality [90, 96], and subsequent stability, imparted by the
serine recombinase mechanism. �C31 is one of several
streptomycete temperate phages that have integration
mechanisms catalyzed by large serine recombinases. In all
cases, the pairs of attP and attB sites share little sequence
identities, and the integration and excision mechanisms
diVer from those of temperate actinophages that utilize
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tyrosine recombinases. In the present review, I describe the
discovery and development of �C31 and other streptomy-
cete temperate phages that utilize large serine recombin-
ases, and discuss their applications for stable cloning and
expression of genes in streptomycetes and other actinomy-
cetes. The integration systems employing �C31, R4, and
other serine recombinases have also been used to engineer
human cells (e.g., see [32, 45, 56, 60, 80, 104]), and �C31
Int has been applied broadly in other eucaryotes, including
lower mammals, Drosophila melanogaster, Xenopus laevis,
zebraWsh, Asian tiger mosquito, Arabidopsis thaliana,
Nicotiana tabacum, and Schizosaccharomyces pombe (e.g.,
see [4, 17, 25, 39, 41, 53, 57, 63, 64, 74, 83, 94, 95, 102,
105]), and in the methanogenic archaean Methanosarcina
acetivorans [16, 34], but the details of these studies are
beyond the scope of this review. Also, readers are referred
to excellent reviews on the molecular mechanisms of inte-
gration catalyzed by tyrosine and serine recombinases
which are not reviewed here [18, 33, 89, 90].

Temperate bacteriophages that utilize large serine 
recombinases

At least four temperate bacteriophages that utilize large ser-
ine recombinases have been isolated on diVerent Strepto-
myces species. The best studied phages are �C31, R4, TG1,
and �BT1 (see below). Temperate phages utilizing large
serine recombinases have been described from other Gram-
positive microorganisms, including Mycobacterium and
Lactococcus species [29, 33]. A hallmark of these bacterio-
phages is that the large serine recombinases require no
additional phage or host functions for site-speciWc integra-
tion, and that integration is unidirectional in the absence of
additional factors [33, 89]. Recombination between attP
and attB sites generates hybrid attL and attR sites which are
generally not substrates for excision by Int alone. The excision
process has been studied in detail with the mycobacteriophage
Bxb1 [29]. In this case excision requires a phage-encoded
protein called recombination directionality factor (RDF).
Although there is no homolog of the mycobacteriophage
RDF in the �C31 genome, an RDF has recently been char-
acterized that binds to �C31 Int to change its speciWcity
from insertion to excision [46]. A key feature of the Strep-
tomyces phage integration systems is that each has a unique
attB site, and the individual attB sites are located in
unrelated genes (Table 1).

Bacteriophage �C31

�C31 is a temperate bacteriophage originally described by
Lomovskaya and colleagues [61, 62] that displays broad
host speciWcity for Streptomyces species (but not for other

actinomycetes) [47, 100]. As with many other streptomy-
cete bacteriophages, the �C31 host range within streptomy-
cetes is limited primarily by type II restriction
endonuclease barriers [24, 36, 37, 100]. The biology of �
C31 and its interaction with streptomycete hosts has been
widely studied, but most of these studies are beyond the
scope of this review.

�C31 integrates via a large serine recombinase into an
attB site located in a pirin-like gene (Table 1) located about
85 and 92 kb to the right of the oriC in S. avermitilis and S.
coelicolor, respectively (Fig. 1). This lies in the center of an
approximately 6.5-Mb region of the linear chromosomes
that contain mainly highly conserved genes dedicated to
primary metabolism, stress responses, macromolecule bio-
synthesis, and developmental biology including sporulation
[13, 21, 42, 49]. (The S. coelicolor orientation [13] has
been reversed to line up with the S. avermitilis genome in
Fig. 1). The mechanism of integration of �C31 into strepto-
mycete chromosomes has been characterized [51, 52, 59,
69, 70, 85, 86, 96] and reviewed [18, 33, 89, 90], and the �
C31 genome sequence is known [88]. The minimal attP
and attB sites comprise 39 and 34 bp, respectively [32], and
they share a 3-bp common sequence at the site of conserva-
tive crossing-over [51].

BLASTP analysis with �C31 Int was carried out in
October 2011, and Wve full-length hits were obtained
(Table 2). Two of the hits were to actinophages TG1 and �
BT1 Int proteins, and three were to proteins encoded by
Kitasatospora setae, Streptomyces violaceusniger, and

Table 1 Genes that contain primary bacteriophage attB sites and their
gene products in S. roseosporus

Phage Target 
gene 
size (nt)

Gene product Annotation

�C31 948 ZP_04709706 Pirin-like protein

�BT1 246 ZP_06586584 Integral membrane protein

R4 1,644 ZP_04712391 Acyl-CoA synthetase

TG1 1,209 ZP_04710111 Aminotransferase

Fig. 1 Genetic map locations of the attB sites for bacteriophages R4,
�BT1, �C31, and TG1 in S. avermitilis (Sav) and S. coelicolor (Sco)
relative to oriC. All four sites reside in the 6.5-Mb core regions that
contain genes highly conserved across Streptomyces sp. [13, 21, 42,
49]
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Streptomyces zinciresistens. The Int homolog encoded by
K. setae shows highest sequence similarity to �C31 Int
(53.2%), and its gene maps to a region central to the linear
chromosome (about 4.59 Mb into the 8.78-Mb genome)
located just downstream of a truncated pirin-like gene. Just
downstream of the int homolog is a gene that encodes a
potential Xis function that shows 37.7% amino acid iden-
tity to the gp3 protein encoded by �C31 ([46]; see below).
Further downstream of these genes is a large portion of the
pirin-like gene missing in the truncated gene upstream of
int that may have been generated by an integration event.
Adjacent to the downstream truncated pirin-like gene is a
complete pirin homolog which may contain the target for
pSET152 integration [20]. BLASTP analysis with �C31
gp11, a DNA polymerase that has homologs encoded by
the streptomycete phages �BT1 [30] and phiSASD1 [101],
and by many mycobacterial phages, revealed no homolog
in K. setae. BLASTP analysis of S. violaceusniger and
S. zinciresistens also revealed no homologs to �C31 gp3 or
gp11. In summary, there is no evidence for complete pro-
phage insertions in the vicinity of the int homologs in
K. setae, S. violaceusniger, or S. zinciresistens.

Recent studies have characterized protein gp3 encoded
by �C31 as the RDF or Xis protein required for excision of
integrated �C31. Protein gp3 binds directly to Int in 1:1
stoichiometry and changes the recombinational speciWcity
from attP and attB to attL and attR [46]. The gp3–Int com-
plex also catalyzes recombination between two attL or two
attR sites. These Wndings should further extend the utility
of the �C31 integration (and now excision) system for
genetic engineering applications [91].

A number of cloning vectors employing �C31 have been
developed [47], and those employing only the att/int func-
tions coupled with oriT from RP4 for conjugation from
E. coli were developed by Bierman et al. [14]. Notably,
pSET152, which lacks replication functions for streptomy-
cetes, has gained wide acceptance as an insertion vector to
generate stable recombinants. More recently, bacterial arti-
Wcial chromosome (BAC) vectors containing �C31 att/int
and oriT functions have been used to stably insert large sec-

ondary metabolite gene clusters into the chromosomes of
heterologous hosts [2, 8, 9, 71, 82]. pSET152 and other �
C31-based conjugal insertion vectors have utility in many
streptomycetes and other actinomycetes. The frequencies of
transconjugant formation range from 1.6 £ 10¡4 to
1.4 £ 10¡2 in many Streptomyces species (Table 3). In
some cases where the recipient host restricts modiWed
DNA, conjugation requires the use of an E. coli host defec-
tive in Dam/Dcm methylation. The generally high transcon-
jugant frequencies in streptomycetes can be attributed to
three factors: (1) conjugation bypasses type II restriction
enzyme barriers [8, 14, 67]; (2) the �C31 attB site is
located in a gene encoding a pirin-like protein that is widely
distributed within Streptomyces sp. [23] (Tables 4, 5); and
(3) �C31 integration is generally very eYcient. In addition
to the primary attB site, Streptomyces sp. can have pseudo-
attB sites for �C31 integration. The frequency of transcon-
jugant formation in S. coelicolor dropped from 1.5 £ 10¡3

to 5 £ 10¡6 when the primary attB site was deleted
(Table 3), and the insertions mapped to three pseudo-attB
sites that showed some sequence homology to authentic
attB sites [23].

Some other actinomycetes are recipients for transconju-
gation, protoplast transformation, or electroporation
with pSET152 or other �C31-based integration vectors
(Table 3). In some cases transconjugant frequencies in non-
streptomycetes were high (e.g., in Actinoplanes teichomy-
ceticus and Nonomuraea sp. 40027), but in other cases they
were very low. For instance, in Saccharopolyspora spinosa,
which lacks a pirin-like gene, transconjugants were
obtained at a frequency of 10¡7, and integrations occurred
in two pseudo-attB sites [67]. In Saccharopolyspora eryth-
raea, which also lacks a pirin-like gene [81] and is nor-
mally a poor recipient for conjugation, insertion of a
portable streptomycete attB site converted it into a high fre-
quency recipient for the integration of transgenes [84]. In
Mycobacterium smegmatis, Mycobacterium bovis, and
Mycobacterium tuberculosis, low frequencies of recombi-
nants were obtained by electroporation with pIJ8600 [77].
Mycobacterium smegmatis MC2-155 has a pirin-like gene,

Table 2 Homology relation-
ships between streptomycete 
bacteriophage large serine 
recombinases or integrases (Int) 
determined by BLASTP

BLASTP subject 
(amino acids)

Amino acid identities (%) with BLASTP query

�C31 Int TG1 Int �BT1 Int

�C31 CAA07153 (605) 605/605 (100) 305/614 (49.7) 157/614 (25.6)

TG1 BAF03600 (619) 305/621 (49.1) 619/619 (100) 164/639 (25.7)

�BT1 CAD80152 (594) 162/629 (25.8) 160/642 (24.9) 594/594 (100)

K. setae BAJ29918 (571) 312/587 (53.2) 282/610 (35.8) 166/612 (27.1)

S. violaceusniger 
ZP_07610497 (595)

221/601 (36.8) 222/620 (35.8) 169/631 (26.8)

S. zinciresistens 
ZP_08805684 (574)

262/579 (45.3) 263/588 (44.7) 151/631 (25.6)
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but the recombinant analyzed by Murry et al. [77] localized
the insertion in a pseudo-attB site. Mycobacterium tubercu-
losis and M. bovis do not have pirin-like genes, and inser-
tions were in pseudo-attB sites.

BLASTP and BLASTN surveys of ten streptomycetes
identiWed pirin-like genes in each case. In typical strepto-
mycete orthologs, the ratio of the number of mutations
causing non-synonymous amino acid substitutions (dN) to

Table 3 Actinomycete host 
range of �C31-based vectors

Strain Vector Insertion site Transconjugant 
frequencya (£10¡5)

References

Amycolatopsis japonicum pSET152 attB? 2.4 [92]

A. japonicum pSET152 – <0.01 [15]

A. teichomyceticus pSET152 attB 610 [35]

Arthrobacter aurescens pTOL1 NDb 1 [100]

Kitasatospora setae pSET152 attB 0.1 [20]

Micromonospora aurantiaca pTOL1 ND 1 [100]

M. griseorubida pSET152 – NOb [98]

M. griseorubida pSET152 strep-attB NRb [98]

M. rosaria pSET152 pseudo-attB? NR (low) [5]

Micromonospora sp. 40027 pSET152 pseudo-attB? NR [54]

Mycobacterium smegmatis pIJ8600 pseudo-attB? Lowc [77]

Nonomuraea sp. ATCC 39727 pSET152 attB »100 [65, 93]

Pseudonocardia autotrophica pSET152 attB? NR [43]

Rhodococcus equi pSET152 attB Highd [40]

S. albus G pTO1 attB 50 [100]

S. ambofaciens pSET152 attB 1,400 [48]

S. antibioticus ATTC 23879 pTO1 attB 300 [100]

S. aureofaciens VKPM AC 755 pTO1 attB 50 [100]

S. avermitilis pSET152 attB NRb,e [49, 55]

S. bambergiensis ATCC 13879 pTO1 attB 1 [100]

S. clavuligerus pSET152 attB NR [97]

S. coelicolor pSET152 attB 210 [15]

S. coelicolor pSET152 attB 150 [23]
S. coelicolor (�attB) pSET152 pseudo-attB 0.5 [23]

S. diastatochromogenes pSET152 attB 16 [15]

S. fradiae (tyl) pSET152 attB 10,000 [14]

S. fradiae (A54145) pStreptoBAC V attB NR (high) [2]

S. griseus Kr.15 pTO1 attB 20 [100]

S. hygroscopicus ATCC 21705 pTO1 attB 100 [100]

S. hygroscopicus ATCC 10976 pTO1 attB 20 [100]

S. lividans pSET152 attB 530 [15]

S. lividans TK64 pTO1 attB 100 [100]

S. pristinaespiralis pSET152 attB 136 [44]

S. purpureus ATCC 21405 pTO1 attB 10 [100]

S. rimosus ATCC 23955 pTO1 attB 10 [100]

S. roseosporus pStreptoBAC V attB NR (high) [22]

S. toyocaensis pOJ436 attB 20 [66]

S. venezuelae ATCC 10595 pTO1 attB 20 [100]

S. virginiae ATCC 13161 pTO1 attB 200 [100]

S. viridochromogenes Tu 494 pTO1 attB 30 [100]

Sacc. erythraea pSET152 pseudo-attB NR (low) [84]

Sacc. erythraea pSET152 strep-attB NR (high) [84]

Sacc. spinosa pOJ436 pseudo-attB 0.01 [67]

a Transconjugants per recipient 
cell unless reported otherwise
b ND not determined, NO none 
observed, NR not reported
c Low frequency of recombi-
nants obtained by electropora-
tion
d 8.5 £ 104 CFU/�g DNA by 
electroporation
e Plasmid introduced by proto-
plast transformation
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the number causing synonymous amino acid substitutions
(dS) is about 0.4–0.9 ([10]; this report). The dN/dS ratios
for paralogs tend to be about 1.0 or higher. Because of the
high G+C content of streptomycete genes, dN/dS ratios for
orthologs translate into a situation where the percent
change in amino acid identities diverges at nearly the same
rate as the percent change in nucleotide identities. Inspec-
tion of the amino acid and nucleotide identities for the
pirin-like homologues in the ten streptomycetes indicates
that both are drifting at about the same rates; the
dN/dS ratio calculated for the average of all ten was 0.4. By
comparison, the dN/dS ratio calculated for the average of
ten glnA genes (Tables 4, 5) was also 0.4. Thus it appears
that the pirin-like genes are orthologs. Inspection of sev-
eral pirin-like gene sequences indicated that the actual
45-nucleotide attB sequence is present in all cases, and that
it is generally even more conserved than the overall gene
sequence. For instance, the S. avermitilis attB shared 93.3%
nucleotide identities with the S. roseosporus attB, whereas
the complete genes showed 84.4% nucleotide identities
(Table 4). Likewise, the S. griseus attB showed 100%
nucleotide identities to S. roseosporus attB and their genes
shared 95.7% identities. It is clear from these data that the
presence of �C31 attB sites can be surveyed eYciently by

initially doing BLASTP analysis, followed by conWrmation
at the gene and attB site level using BLASTN.

A BLASTP survey of ten non-streptomycete actinomy-
cetes genomes identiWed �C31 attB potential targets in six
strains. In all cases, pirin-like genes were present, and attB
sites were conWrmed in the two strains examined in detail.
In Frankia sp. EAN1pec, the attB site showed 84.4%
nucleotide identities with the S. roseosporus attB, and the
M. smegmatis attB showed 73.3% identities. The average
dN/dS for the six pirin homologs was 0.6, suggesting that
most or all are orthologs to the S. roseosporus pirin-like
gene. For comparison, the glnA genes from the non-strepto-
mycetes have diverged from the glnA gene of S. roseospo-
rus at an average dN/dS ratio of 0.9.

Notably, a pirin-like gene was absent from S. erythraea,
and the closest homolog encoded a protein with only 31.7%
amino acid identity to the pirin-like protein of S. roseospo-
rus (Table 5). The combined genetic and bioinformatic data
indicate that �C31-based vectors are widely applicable for
streptomycetes, and suggest that they may be useful in cer-
tain other actinomycetes. The potential utility can be deter-
mined a priori by genome sequencing to determine if a
pirin-like gene is present. If a �C31 attB site is not present,
then a portable attB site might be inserted to increase the

Table 4 Homologs in strepto-
mycetes and other actinomy-
cetes to genes containing 
bacteriophage attB sites and 
glnA from S. roseosporus

Strain Homolog to target gene (% nt identity)a

C31 BT1 R4 TG1 GlnA

Streptomyces albus 85.4 84.0 80.9 77.3 91.3

S. avermitilis 84.4 89.0 81.0 78.5 91.4

S. clavuligerus 85.4 86.1 83.2b 76.9 92.1

S. coelicolor 84.7 86.2 80.3 79.8 89.1
S. Xavogriseus 88.4 83.5 85.7 76.8 93.9

S. ghanaensis 85.3 85.1 82.3 79.2 90.6
S. griseoXavus 85.2 81.9 82.1 78.3 90.6

S. griseus 95.7 99.2 92.0 91.0 98.1

S. viridochromogenes 85.0 88.8 81.2 78.4 90.7

S. sp. SPB78 83.6 83.5 79.7 79.9 92.2

Streptomyces ave 86.3 86.7 82.8 79.6 92.0

Amycolatopsis mediterranei – 72.1 78.5 70.5 79.4

Catenulispora acidiphila 72.6 65.4 73.7 75.4 82.1

Frankia sp. EAN1pec 70.0 – 64.4b 65.5 77.2

Micromonospora aurantiaca 78.1 – 63.4b 74.6 80.3

Mycobacterium smegmatis 71.7 – 71.9 70.9 78.1

Rhodococcus erythropolis 69.8 – 69.7 67.3 77.3

Saccharomonospora viridis – 71.0 73.7 64.9 75.5

Saccharopolyspora erythraea – 62.3 76.4 68.6 80.8

Salinispora arenicola – – – 71.7 78.8

Streptosporangium roseum 74.8 – 77.2 69.6 81.3

Non-streptomycete ave 72.8 67.7 74.4c 69.9 79.1

a Nucleotide searches were car-
ried out using search parameters 
adjusted to a word size of 16, 
match/mismatch scores of 2, ¡3, 
and gap costs of 2 for existence 
and 2 for extension, using the 
BLAST server (http://blast. 
ncbi.nlm.nih.gov/Blast.cgi)
b BLASTN aligned only 
67–75% of these nt sequences, 
whereas BLASTP (Table 5) 
aligned 95–100% of the aa 
sequences
c Frankia sp. EAN1pec and 
M. aurantiaca were excluded in 
the calculation because of the 
lack of full-length sequence in 
the BLASTN analysis
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eYciency of genetic manipulations, as demonstrated in
S. erythraea [84] and Micromonospora griseorubida [98].
This concept has already been generalized to engineer
eucaryotes (e.g., see [18, 56, 60, 74, 103]) and archaea [16,
34], and should be applicable to any organism that is ame-
nable to genetic manipulation.

Bacteriophage �BT1

�BT1 is a temperate phage related to �C31 [30]. Like �
C31, it integrates via a large serine recombinase, and its
73-nucleotide attP and attB sites are quite diVerent from each
other. However, they have core 12-nucleotide sequences
nearly identical to each other (11 of 12 identities) where
crossing-over occurs. Importantly, �BT1 integrates into a
gene annotated to encode an integral membrane protein
unrelated to the pirin-like gene for �C31 integration
(Table 1). The �BT1 Int is distantly related to �C31 Int,
showing only 26% amino acid identities in reciprocol
BLASTP analyses (Table 2). It has similar low sequence
identities to the three other proteins that gave signiWcant
hits to �C31 Int, and had no other signiWcant hits (Table 2).
In S. coelicolor and S. avermitilis, the �BT1 attB site is
located about 1 Mb to the left of oriC, and within the
6.5 Mb core region (Fig. 1). The mechanism of insertion

was studied in vitro where it was shown that the minimal
attB and attP sites comprise 36 and 48 bp, respectively
[106]. The integration process was very eYcient with attB
and attP substrates, but was also measurable with attL and
attR sequences, implying that Int might excise �BT1 in
vivo at some frequency in the absence of other factors. Fur-
ther mechanistic studies have been reported recently [107].
Although no studies have been carried out to characterize
an Xis or RDF protein, BLASTP analysis with the 244-aa
gp3 RDF from �C31 gave a top hit of 84.8% amino acid
identities to a 247-aa gp3 protein from �BT1 (this report).
It is likely that this protein serves an Xis or RDF function
for �BT1. If so, it could extend the potential utility of the �
BT1 integration system.

Gregory et al. [30] constructed vectors derived from
pSET152 by replacing the �C31 att/int with �BT1 att/int,
and by exchanging antibiotic resistance genes. They
showed that the �BT1-based vectors conjugated from
E. coli into S. coelicolor and integrated at frequencies
comparable to those of pSET152 (3.5 £ 10¡3 per recipi-
ent). Importantly, they demonstrated that an S. lividans
transconjugant containing a �BT1-based vector inserted in
the chromosome was an eYcient recipient for conjugal
transfer of pSET152. Since the �C31 and �BT1 systems
are compatible, they can be used to add genes sequentially

Table 5 Homologs in strepto-
mycetes and other actinomy-
cetes to proteins encoded by 
genes containing bacteriophage 
attB sites and GlnA from 
S. roseosporus

Strain Homolog to target protein (% aa identity)

�C31 �BT1 R4 TG1 GlnA

Streptomyces albus 89.2 80.0 78.0 72.7 92.3

S. avermitilis 85.7 84.4 80.5 75.4 91.7

S. clavuligerus 88.6 89.6 77.7 70.3 95.1

S. coelicolor 87.3 83.5 80.3 74.2 89.3
S. Xavogriseus 90.8 83.1 87.2 73.3 96.8

S. ghanaensis 86.7 75.9 80.0 74.7 90.6
S. griseoXavus 87.9 74.4 80.5 71.4 91.0

S. griseus 96.5 100 92.1 90.5 99.1

S. viridochromogenes 88.3 79.7 80.0 73.5 94.5

S. sp. SPB78 84.1 83.1 76.1 80.2 92.1

Streptomyces ave 88.5 83.4 81.3 75.6 93.3

Amycolatopsis mediterranei – 61.3 68.5 58.7 70.0

Catenulispora acidiphila 69.8 46.9 63.8 71.9 77.2

Frankia sp. EAN1pec 72.0 51.9 40.6 43.2 69.6

Micromonospora aurantiaca 70.7 – 68.2 67.4 73.4

Mycobacterium smegmatis 65.4 – 60.3 55.4 69.1

Rhodococcus erythropolis 68.8 – 65.2 55.2 70.0

Saccharomonospora viridis – 59.0 68.7 58.5 70.7

Saccharopolyspora erythraea –a 49.4 67.0 58.9 74.7

Salinispora arenicola – – – 71.7 72.8

Streptosporangium roseum 66.4 – 68.2 59.4 71.9

Non-streptomycete ave 68.9 54.2b 66.0c 60.0 71.9

Protein searches were carried 
out using the BLAST server 
(http://blast.ncbi.nlm.nih.gov/
Blast.cgi)
a Closest match, 31.7%
b This calculation does not 
include Frankia sp. EAN1pec 
for which no BLASTN hit was 
obtained
c Frankia sp. EAN1pec and 
M. aurantiaca were excluded in 
the calculation because of the 
lack of full-length sequence in 
the BLASTN analysis. See foot-
note c in Table 4
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to genetically engineer S. lividans, and other streptomy-
cetes. Gregory et al. [30] investigated conjugation into
other streptomycetes, and recovered transconjugants from
S. avermitilis, S. cinnamonensis, S. fradiae, S. lincolnensis,
S. nogalater, S. roseosporus, and S. venezuelae. �BT1-
based vectors also function eYciently in the rapamycin-
producing Streptomyces hygroscopicus [31, 50], where it
was shown that insertions are neutral under the prevailing
fermentation conditions (i.e., they cause no reduction in
rapamycin production). This property is important for the
genetic engineering of industrial production strains.

The �BT1 Att/Int system can also be used in conjugal
BAC vectors for site-speciWc insertion in Streptomyces
chromosomes. Liu et al. [58] developed a �BT1-based
BAC and used it to clone and express the meridomycin bio-
synthetic gene cluster in S. lividans. Alexander et al. [2]
modiWed a BAC vector to accommodate the engineering of
lipopeptide biosynthetic genes in E. coli followed by conju-
gal transfer and insertion into the �BT1 attB site in S. fra-
diae strains. This system was coupled with the use of �
C31-based vectors to set up an ectopic transcomplementa-
tion system that allows lipopeptide biosynthetic genes to be
expressed from three diVerent locations in the chromosome
to facilitate combinatorial biosynthesis [2, 3, 12, 79]. They
also demonstrated that insertions into �BT1 and �C31 attB
sites are neutral with respect to antibiotic production in
S. fradiae, and that the complete set of A54145 biosyn-
thetic genes can be expressed more eYciently from either
attB site than from the native locus which is located in a
potentially unstable subteleomeric region containing IS and
transposase sequences [11, 72]. This approach might be
applied to other streptomycetes where antibiotic biosyn-
thetic genes are located in unstable subteleomeric regions
of linear chromosomes. The compatibility of the two inte-
gration systems presents possibilities for doubling and tri-
pling of complete secondary metabolite gene clusters for
heterologous expression and strain improvement in strepto-
mycetes [8, 9].

The apparent broad host speciWcity of the �BT1 Att/Int
system is supported by recent genome sequencing studies.
The integral membrane protein gene containing the attB
site for S. roseosporus has apparent orthologs in all ten
Streptomyces surveyed by BLASTN and BLASTP analyses
(Tables 4, 5). Although the average dN/dS ratio for all ten
was 0.8, BLASTN analysis of the S. griseus and S. ghana-
ensis genomes using the original 73-nucleotide attB site
described by Gregory et al. [30] picked up full-length
sequences with 92 and 96% identities to attB in the target
genes. The attB sites are located in a highly conserved
region in the Wrst one-third of the gene.

Of the ten non-streptomycete actinomycetes surveyed,
only four have homologous genes encoding integral mem-
brane proteins. These include Amycolatopsis mediterranei

and S. erythraea, both of which lack �C31 attB sites. The
average dN/dS ratio for the four genes is 1.0, suggesting
that one or more may have been under selection to evolve a
paralogous function. A closer inspection of the attB regions
in these four genes indicated that the A. mediterranei and S.
viridis attB sequences, which have only 1 mismatch in the
12-nucleotide crossover region, are more highly conserved
than those of S. erythraea and C. acidiphila, which have
four and Wve mismatches in the crossover region, respec-
tively. The lower amino acid sequence homologies relative
to the S. roseosporus target gene product observed with the
last two strains also suggests that the corresponding genes
are paralogs to the streptomycete genes, and that purifying
selection [10] to maintain the usually highly conserved attB
region is relaxed in both cases.

The biological data and bioinformatic analyses indicate
that �BT1-based vectors should have broad applicability
for engineering of streptomycetes; bioinformatic data also
suggest limited potential utility in other actinomycetes. As
demonstrated with the �C31 integration system, a portable
�BT1 attB site could be inserted into non-streptomycete
chromosomes for genetic engineering purposes. A portable
�BT1 att site has been used to demonstrate that �BT1 Int
functions eYciently in vertebrate cells and Schizosaccharo-
myces pombe. Morover, this system has been used in con-
junction with Cre to build a transgenic human–Chinese
hamster hybrid cell line containing 400 kb of contiguous
transgenic DNA [105].

Bacteriophage R4

R4 is a broad-host-range streptomycete temperate bacterio-
phage isolated from soil on Streptomyces albus J1074, a
mutant of S. albus G defective in SalI restriction and modi-
Wcation [19]. Like many other Streptomyces bacterio-
phages, its host range is limited primarily by type II
restriction enzyme barriers [19, 24, 36, 37]. R4 integrates
site-speciWcally into the chromosome of Streptomyces
parvulus (and presumably in other streptomycetes) to
establish lysogeny [87]. Matsuura et al. [68] demonstrated
that integration is catalyzed by a large serine recombinase
that recognizes attP and attB sites for integration, but not
attL and attR sites for excision. The 50-nucleotide attB site
contains a 12-nucleotide common core that is also found in
the attP site, and serves as the region for site-speciWc
recombination [80]. The 50-nucleotide attB site was used to
carry out BLASTN analysis in S. roseosporus, and a highly
conserved 41-nucleotide segment containing the 12-nucleo-
tide common core was located in a gene that encodes an
acyl-CoA synthetase (Table 1). This gene and its product
were used to carry out BLASTN and BLASTP analyses
against ten Streptomyces and ten other actinomycete
genomic sequences: highly conserved apparent orthologs
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(average dN/dS = 0.6) were observed in all ten Streptomyces
species (Tables 4, 5). The acyl-CoA synthetase apparent
orthologs containing attB sites in S. coelicolor and S. aver-
mitilis mapped to similar locations within the 6.5-Mb core
regions of the linear chromosomes (Fig. 1). Homologs were
also observed in nine of ten other actinomycetes, but these
appear to be a mixture of orthologs and paralogs. The aver-
age dN/dS ratio for seven of the gene/protein pairs (exclud-
ing Frankia sp. EAN1pec and M. aurantiaca) was 0.9. The
50-nucleotide R4 attB sites were compared for four of the
strains. C. acidiphila, S. erythraea, and S. viridis have
authentic attB sites showing 94, 96, and 92% nucleotide
identities, respectively, to the S. roseosporus attB site. Fur-
thermore, the same strains had 12, 12, and 11 nucleotide
identities to the 12-nucleotide crossing-over region. On the
other hand, Frankia sp. EAN1pec, which encodes an acyl-
CoA synthetase homolog that shows only 40.6 amino acid
identities to the S. roseosporus counterpart, has a 50-nucle-
otide attB site that is only 54% identical to the attB of
S. roseosporus, and it has only 6 of the conserved 12 nucleo-
tides for crossing-over. This gene appears to be a paralog to
the streptomycete R4 target genes, and probably would not
serve as an eYcient target for R4 integration.

Although R4 has not been used widely as a general tool
for insertion of genes in actinomycetes, it has been shown
to be a useful tool for engineering human cells (e.g., see
[56, 60, 80]).

Bacteriophage TG1

TG1 is a temperate bacteriophage isolated on Streptomyces
cattleya, the thienamycin producer [26]. It has a broad host
range for Streptomyces species, but did not form plaques on
S. coelicolor or S. lividans [26, 27]. Analysis of multiple
lysogens indicated that it inserted into a single attB site in
S. cattleya [26]. TG1 was developed as a bifunctional vec-
tor that could be engineered in E. coli, transfected into a
streptomycete host, then transduced into other streptomy-
cete hosts where it formed relatively stable lysogens [27].

TG1 was recently shown to integrate site-speciWcally by
a large serine recombinase mechanism [75, 76]. BLASTP
analysis with TG1 Int gave signiWcant hits only to �C31 Int
(49.7%) and to the four other proteins identiWed in
BLASTP analyses with �C31 and �BT1 integrases
(Table 2). In vitro studies demonstrated that the TG1 Int
does not require host factors for insertion, and that it does
not catalyze excision [76]. The minimal attP and attB sites
were shown to comprise 43 and 39 nucleotides, respec-
tively, and share a common dinucleotide (TT) at the site for
crossing-over [76]. Recent studies have demonstrated that
TG1 Int can drive eYcient integration of attB-containing
circular plasmid DNA into E. coli containing an attP
sequence inserted into the chromosome by EZ-Tn5 transpo-

sition [38], a technique that might be applicable to other
bacteria and other serine integrases.

The TG1 attB site is located in a dapC-like gene which
may encode an N-succinylaminopimelate aminotransferase
[75]. However, TG1 lysogens of S. avermitilis did not
require lysine or diaminopimelate for growth, suggesting
that the dapC annotation may be incorrect, and that the
gene may encode an aminotransferase with a diVerent func-
tion. The TG1 attB site in the dapC-like gene is located
about 230 kb to the right of oriC in both S. coelicolor and
S. avermitilis, or about 140 kb to the right of the �C31 attB
site (Fig. 1). Apparent orthologs of the dapC-like gene were
observed in all ten streptomycetes (average dN/dS = 0.70)
(Tables 4, 5). Homologs of the dapC-like gene were
observed in all ten other actinomycetes surveyed, but
some of these are likely to be paralogs. For instance, the
dN/dS ratios for Frankia sp. EAN1pec and M. smegmatis
are 1.4 and 1.2, respectively. The bioinformatic data
suggest that the TG1 integration system may be directly
applicable to many streptomycetes and possibly to some other
actinomycetes.

Uses of site-speciWc insertion for genetic engineering 
in actinomycetes

Streptomycete phage site-speciWc integration systems have
been used for a number of applications that require stable
insertion of one or more genes into the chromosome. Indus-
trial applications include strain improvement for early to
late-stage process development, heterologous expression of
cryptic secondary metabolite biosynthetic gene clusters for
drug discovery, and combinatorial biosynthesis to generate
novel derivatives of known secondary metabolites [6–9,
12]. For strain improvement, site-speciWc insertion can be
used to: (1) increase gene dosage to address rate-limiting
primary or secondary metabolic steps; (2) change promot-
ers to improve the expression of regulatory and other genes;
(3) alter the metabolic capability of cells by adding new
functions; (4) and duplicate or triplicate complete second-
ary metabolite gene clusters [9]. For the discovery of novel
drug candidates from cryptic secondary metabolite gene
clusters discovered in genome sequencing projects, candi-
date gene clusters can be: (1) cloned in BAC vectors that
replicate in E. coli; (2) transferred by conjugation from
E. coli into streptomycete expression hosts, including those
derived from industrial production strains; and (3) stably
inserted at appropriate attB sites. Transconjugants can then
be fermented in several media and screened for the expres-
sion of novel secondary metabolites. This process and the
properties of key streptomycete expression hosts are dis-
cussed in more detail elsewhere [8, 9]. The use of site-spe-
ciWc integration vectors for combinatorial biosynthesis has
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the advantage that diVerent genes or sets of genes can be
engineered separately, and then diVerent combinations of
the engineered genes can be brought together in an expres-
sion host [7, 8, 12]. Recent examples that demonstrate the
power of this approach are the engineering and expression
of separate nonribosomal peptide synthetase (NRPS) multi-
enzymes, or other genes encoding amino acid modifying
enzymes, by insertion into the S. fradiae chromosome at the
�C31 and �BT1 attB sites to generate a large array of
novel lipopeptide antibiotics with tridecapeptide structures
derived from A54145 and daptomycin [2, 3, 79]. These
site-speciWc integration systems can also be used in combi-
nation with other insertion systems, such as IS117 [22, 73,
78].

Discussion

The bacteriophage �C31 Att/Int system has made a large
impact on the development of robust genetic engineering
tools for the industrially important Streptomyces and other
actinomycetes. This work was initiated in Russia by the
Lomoskaya laboratory, and further developed in Russia and
in the UK by the Keith Chater and Margaret Smith labora-
tories. The work on the fundamental biology of �C31 pro-
vided a rich starting point for the seminal work of Kustoss,
Rao, and colleagues at Eli Lilly and Company, who devel-
oped the Att/Int system into a widely useful set of cloning
vectors for Streptomyces species [14, 51, 52]. These and
their derivatives have been applied to strain improvement,
combinatorial biosynthesis, and whole pathway heterolo-
gous expression. In addition to the important applications
in the native actinomycetes, the unidirectional serine
recombinase systems have impacted the broader Weld of
biotechnology, providing a robust methodology for the
engineering of eucaryotic cells.

�C31 is just one of several streptomycete temperate
phages described in the literature, most of which are poorly
characterized. R4, TG1, and �BT1 have been studied in
some detail; as with �C31, all three have broad host ranges
within Streptomyces species, and integrate by unidirec-
tional serine recombinases. Importantly, they integrate into
diVerent genes that are highly conserved in Streptomyces
species. This represents an interesting evolutionary strategy
to have the potential to lysogenize any species of the genus
Streptomyces, rather than limit the host range to one or a
subset of streptomycetes by inserting into genes not con-
served across the species. The host range is thus maxi-
mized, and limited primarily by host type II restriction
barriers.

For applications in streptomycetes, the broad host speci-
Wcity and conservation of genes containing attB sites for
these integration systems enables sequential addition of

genes for combinatorial biosynthesis, strain development,
and other applications. The host restriction barriers are
often easily overcome by using conjugal transfer from
E. coli [14, 67], a process that transfers linear concatemers
of single-strand DNA which are not susceptible to host-
encoded type II restriction endonuclease cleavage [8]. The
diVerent attB genes or sequences can also be used as porta-
ble integration sites in other actinomycetes that lack attB
sites. It is conceivable that four or more diVerent attB sites
could be cloned contiguously, then inserted into an actino-
mycete of interest at a site that is neutral for secondary
metabolite production. This would provide a target for
sequential addition of any number of genes for a variety
purposes. This approach has already been applied to mam-
malian cells [56, 60, 74, 103]. In principle, this concept
could be applied to other eubacteria, archaea, plants, mam-
mals, and other eucaryotes. The applications are limited
only by our current knowledge of bacteriophages that
employ large serine integrases. There are undoubtedly
many more temperate bacteriophages for streptomycetes
and other actinomycetes that use this mechanism. Broad-
host-range temperate bacteriophages are readily isolated on
Streptomyces strains, and Streptomyces griseofuscus is par-
ticularly useful for bacteriophage isolations because it is
non-restricting for bacteriophage plaque formation [24],
and has been used to isolate temperate bacteriophages from
soil [36, 37].

Although several large serine recombinase systems have
already been discovered, it is not known if the best ones
have been identiWed. There exists an untapped wealth of
additional temperate actinophages yet to be discovered, and
these can be isolated inexpensively from soil.
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